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Novel Weissenberg effects 
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We have observed two novel manifestations of the Weissenberg effect in viscoelastic 
liquids which are set into motion by the rotation of a circular rod. In  the first experi- 
ment we floated a layer of STP on water. The STP climbs up the rod into the air and 
down the rod into the water. The ‘down-climb’ is much larger than the ‘up-climb’, 
their ratio being roughly the square root of the density difference (STP-air)/ 
(water-STP). The magnification of the down-climb may be regarded as normal-stras 
amp2ijication.t The magnitudes of the up- and down-climbs are simultaneously in good 
agreement with the predictions of a theory of rod climbing when the angular frequency 
of the rod is small. In  the second experiment, we set the rod into torsional oscillations. 
When the amplitude of the oscillation is small, the fluid climbs the rod; the climb is 
divided into an axisymmetric steady mean part and an oscillating part (Joseph 
19763; Beavers 1976). The mean axisymmetric climb dominates the total climb at low 
frequencies. At a higher critical speed the axisymmetric climbing bubble loses its 
stability to another time-periodic motion with the same period but with a ‘flower’ 
pattern displaying a certain integral number of petals. 

1. A normal-stress amplifier: the free surfaces on a viscoelastic liquid 

We shall first give a brief analysis which shows that when the angular frequency Q of 
the rod is small the height rise at each interface is decoupled and can be obtained from 
formulae similar to those given by Joseph, Beavers & Fosdick (1973) and Beavers & 
Joseph (1975). In  comparing the analysis of the three-fluid configuration given here 
with the earlier analyses three points of difference deserve emphasis. 

(i) In  this analysis we solve the dynamical problem as a coupled problem in all three 
layers. Correct coupling conditions for continuity of stresses at each of the two inter- 

7 The idea of using a second fluid as a‘ normal-stress amplifier ’ could be inferred from incidental 
remarks in the report by Saville & Thompson (1909) on experiments on seoondary flows associated 
with the Weissenberg effect. They used two guard fluids of about equal density to suppress the 
effects of the ends on the secondary flows. They concluded their report on secondary flows with the 
observation that: ‘‘ Further experiments indicated that the motion was downward along the 
shaft in the upper main toroidal eddy and upward along the shaft in the upper bead. At the lower 
interface of the non-Newtonian liquid, normal stresses have caused downward extrusion of this 
liquid, quite similar to the more familiar rod climbing exhibited in the upper bead. Choosing 
‘ guard’ liquids with densities near that of the non-Newtonian liquid increases the size of the 
beads thus accentuating the effects of normal stresses. The existence of such a secondary flow 
emphasizes the complex nature of flows of non-Newtonian fluids and the usefulness of flow 
visualization techniques.” 

floating on water 
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FIGURE 1. Schematic sketch of the free surfaces on STP floating on water. 

faces are prescribed. For example, we require the tangentia.1 tractions to be continuous 
across each interface and we do not assume that the tangential tractions of air and 
water on STP are negligible. Despite this, the analysis shows that no secondary motion 
is generated a t  second order in R where the deviation from a flat free surface first occurs. 

(ii) The shape of the STP-air interface is the same as that given by equation (16.2) of 
Joseph et al. (1973) or by equation (6.5) of Beavers & Joseph (1975) if the density p 
of STP is replaced by p -pa ( M p ) ,  where pa is the density of air. 

(iii) The shape of the water-STP interface also depends on a density difference, 
pw -p,  where pw is the density of water, but the shape of the free surface is not similar 
to that of the STP-air surface. The effect of inertia and gravity is to push the heavy 
fluid down near the rod. The normal stresses push the STP up into the air and down 
into the water. Hence inertia and normal stresses are in conflict at  the STP-air inter- 
face and in concert at  the water-STP interface. 

The configuration under discussion is sketched in figure 1. The basic analysis for the 
shape of the free surface has been given in Joseph et aE. (1973) and Beavers & Joseph 
(1975), hereafter designated as I and I1 respectively. We shall now show how the 
formulae for the free surface given in I and I1 may be adapted to give the shapes of the 
free surfaces z = hT(v, R) and z = hB(v, R) depicted in figure 1. 
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We shall assume that the motions are isochoric and that the fluid satisfies the no-slip 
condition at the rod surface. Then divu = 0 and u(a, z, 0)  = e,aQ simultaneously in 
the air, STP and water. Apart from the hydrostatic pressure, all other flow variables 
are to be independent of z as z -+ CO. 

The dynamic equations are 

pau. V u  = - VCD, +paV2u (air), 

~ u . V U  = -VCD+V.S (STP), 

p , u . V u  = -VCD,+pwV2u (water). (3) 

Here S is the extra stress, CD = p +pgz  is the head, p is the pressure of constraint, and 
(pa, pa, CD,), (pw, p,, @,) and (p, p, CD) are the (density, viscosity, head) of air, water and 
STP. 

The interface conditions are as follows (see I, p. 327). 
(i) No fluid crosses an interface; the normal component u . n of velocity is zero at an 

interface. In  co-ordinate form the vanishing of the normal component of velocity may 
be expressed as 

w = h‘u on z = h,, h,. (4) 

(ii) The shear tractions in co-ordinate form, 

8 2 ,  - h‘Sr6 

h’(SZ2 - S,) + (1 - h”) Sr2, and 

are continuous across the interfaces z = h, and z = h,. 
(iii) The jump in the normal component of the stress is balanced by surface tension: 

0 = ( - p + # , , ) - (  - P , + 2 p , D t ~ ) - T ~ r - ’ [ r h ; . / ( i + h ~ ) t ] ’  

= - @ f @a -k S,, - 2/laDt2 + (p -p,) ghT - TTr-l[rhk/( 1 -k hg)i]‘ 

0 = - @ + CDw + S,, - 2pwDL%) + (p - p,) gh, + T’r-l[rh;/( 1 i- hz)*]’ 

(7) 

on z = hT and, in a similar way, 

( 8 )  

on z = h,, where S,, = n . S . n and D,, = n . D . n are the normal components of the 
extra stress and rate-of-strain tensors, respectively, and TT and TB are the surface- 
tension coefficients at  the top and bottom interfaces. In  co-ordinate form 

S,, = (azz + S, h” - 2h’SZr)/( 1 + h’2). (9) 

(iv) Asymptotically as r -+ 00 the free surface is flat and the distance between hB and 
hT is d.  We choose z = 0 such that 

(10) 

(v) The perturbation analysis of I requires that the contact conditions at  r = a are 

(11) 

The solution of the problem (1)-(11) may be constructed as a perturbation of the 
rest state in powers of Q. The azimuthal components of the velocity and sheer stress are 

I hT(m, 0) = 0; 

then h,(m, 0) = -d .  

compatible with a flat free surface in the rest state. These are taken as 

&(a, a )  = h;(a, Q) = 0. 
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odd functions of Q while the shape of the free surface, the pressure, the secondary 
motion and the normal stress are even functions of Q. The extra stress S is expanded 
into a series of Rivlin-Ericksen tensors in the usual way (see I, 11). We shall outline the 
analysis up to order two. 

WhenQ = 0,u = u(O) = 0, @ = do) = 0 9 h T -  - h(O> T = Oandh, = h$$ = -d.Atfirst 
order all conditions are satisfied with 

u(l) = [au(r, z ,  Q)/aQ],,, = eea2/r2. (12) 

Of course, h<’) and vanish identically. 
Proceeding as on page 485 of 11, we find that at order two (1)-(3) become 

where B = 3a1 + 2a2 is the climbing constant, and 

The inhomogeneous terms in (13)-( 15) are of potential type and may be balanced by 
the heed without motion (u(~) = 0): 

(18) and <2> - - -pwa4/2r2. 

The interface condition ( 4 )  is satisfied because u@) = ZU(~> = 0. The interface condi- 
tion (5) is satisfied identically because S,, and Sr, are odd functions of Q. The interface 
condition ( 6 )  at order two is satisfied identically when u(~) = 0. In  the same way, it is 
easy to verify that interface terms arising from S,, and D,, vanish at  second order 
when u(2) = 0. 

Combining all these results we find that at second order (7) and (8) reduce to 

and - 

Equations (19) and (20) are to be solved subject to the conditions 

and 

as r -+ co. Equations (19) and (20 )  and the boundary conditions are decoupled. There 
is no interaction between the top and bottom at second order. Each boundary-value 
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problem is of the form of equation (I  5.2) of I or equation (4.16) of I1 and the approxima- 
tions used there apply here. We find that the height rises at  the rod may be approxi- 
mated by 

and 

where = ST = (P-Pa)g/TT, s13 = ( ~ w - P ) ~ / ~ B  

and h<2) = [dh(r, f i ~ ) / d f i ~ ] ~ = ~ .  (26) 

Equations (19) and (23) show that normal stresses elevate and inertia depresses the 
STP-air interface. At this interface there is a critical radius: for va.lues of r smaller 
than this critical value normal stresses dominate; for larger values inertia dominates. 
Equations (20) and (24) show that normal stresses and inertia have the same sign and 
both depress the water-STP interface; a critical radius does not exist. 

Equation (23) was used in I and I1 (withp, = 0 )  to compute the value of the climbing 
constant from measurements of the height rise 

h(o, n) - h@(-a) f i 2 .  (26) 

In  our experiments we floated STP (depth = 3.8cm) on distilled water (depth 
= 6.0 cm) in a square container of side 29.2 cm. The surface tension of STP against air 
and the interfacial tension of STP and water were determined by standard procedures 
using a ring tensiometer. The values of the relevant physical parameters are 

p-pa = 0.88g/cm3, pw-p = 0.12g/cm3, TT = 3ldynes/cm, TB = 28dyneslcm. 

The viscosities of the three fluids differ by many orders of magnitude: 

(,u,,,uw,,u) N (O~O0018,0~011,150)g/cms. 

This implies that the STP may be regarded as free of viscous tractions induced by the 
motion of air and water at each interface. It is perhaps worth noting that the viscosity 
does not enter our analysis up to second order. It is therefore not necessary to approxi- 
mate the continuity of stresses with stress-free boundary conditions even though such 
an approximation is justified in the present problem. 

.To test the theory of this paper we measured the height rise at r = a from simul- 
taneous photographs of the up-climb in air and the corresponding down-climb in 
water. These measurements are summarized in figures 2 (a )  and ( 6 ) .  It is apparent that 
there is a measurable interval of values of fi2 over which the rise is linear in R2. For 
these values, (26) is supposed to hold simultaneously for both interfaces. The experi- 
mental values of h$?>(-a) and h%>(-a) are then given by the slopes of the lines in figures 
2(a) and ( b ) .  

Turning next to (23) and (24) we note that the values of all of the quantities except p 
are known. To be consistent with theory it is necessary that every measured value of 
the slope, for each rod, must yield one and the same value of f9. The values of p com- 
puted in this way are summarized in table 1. There is good agreement between the 
corresponding values of the climbing constant obtained from the STP-air interface 
and the STP-water interface. These values are also compared with values for p 
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FIGURE 2. Measured values of the height rise a t  r = a. Open symbols, air; filled symbols, 
water. 0, a = 0.479 cm, temperature = 27-8 "C; A, a = 0.951 cm, temperature = 27-8OC; 
0, a = 0.627 cm, temperature = 23.5 "C; 0, a = 0.627 om, temperature = 28-2 "C. 

computed from the temperature relationship given in I1 for a different sample of 
STP, namely 

The differences between the values of ,8 measured in these experiments and the values 
predicted from (27) are comparable to the discrepancies between (27) and the values of 
some of the original data points used in establishing (27). 

Figure 3 (plate 1) shows photographs of the up-climb and down-climb corresponding 
to four different values of Q. For technical reasons we were unable to photograph the 
up-climb and down-climb on a single photograph using only one camera. Thus the 
photographs of the free surfaces on the bottom and top were taken simultaneously 
using two cameras. The photographs were taken at  grazing incidence across the inter- 
faces, and were then spliced together for presentation in figure 3. The resulting com- 
posite is an accurate representation of the situation more clearly seen in the sketch in 
figure 1.  The reader is cautioned against confusing mirror reflexions in the free surface 
with the actual rise. The fluid rises at the upper free surface and sinks at  the bottom 
free surface. 

For a given frequency Q and a given rod the ratio of the down-climb to the up-climb 
is given approximately by h$)(u)/h$'(a) [see (23) and (24)]. It is usual that the term 
arising from inertia which is proportional to u2 is neglible. Then 

,'? = 20 exp ( - 0.115T) g/cm. (27) 
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a 
Rod radius Temperature r-*--------, a 

(em) ("C) Air/STP WaterlSTP (from 11) 

0.479 27.8 0.78 0.78 0.82 
0.627 23.5 1.07 1.10 1.34 
0.627 28.2 0.65 0.49 0-78 
0.951 27.8 0.83 0.66 0.82 

TABLE 1 

Under the conditions prevailing in our experiment, this ratio is 

A further approximation to this ratio for small values of a is 

For the rods used in our experiments, the values of the ratio computed from (28) are 
3.7, 3.9 and 4.3 for a = 0.479, 0.627 and 0.951 cm. Figures 2(a) and (b)  show that these 
values are in good agreement with the measured values when !2 is small. 

Larger amplification ratios may be achieved by floating the test fluid on Newtonian 
liquids of slightly greater density. A similar analysis may be constructed when the two 
bottom fluids are both viscoelastic. 

2. Symmetry-breaking bifurcation of time-periodic flow induced by 

In  a recent study (Joseph 1 9 7 6 ~ )  a general theory of perturbations of the rest state 
of a simple fluid with an arbitrary time-dependent motion was presented. The theory 
was applied (Joseph 19763) to the problem of the free surface induced by torsional 
oscillations u = egae sin wt of a rod. When the amplitude E of the oscillation ( E  = &&, 
where 0 is the angle of twist) is small the theory predicts a mean climb plus an oscillating 
climb of frequency 2w. Both components of the climb are axisymmetric. Experiments 
by Beavers (1976) are in good agreement with the theory and show further that the 
oscillating part of the climb is barely visible to the naked eye. The mean climb is 
constant in time and is smaller in magnitude than in the case of steady rotation at  a 
value of !2 equal to the root-mean-square value in unsteady flow. When E is large the 
sxisymmetric time-periodic motion loses its stability to what appears to be another 
time-periodic motion with the same period but with a different symmetry pattern. The 
new symmetry pattern has a certain number of petals which are determined by 
operating conditions. In  figure 4 (plate 2) we display photographs of three- and four- 
petal configurations which bifurcate' from time-periodic flow. The experiments for 
figure 4 were performed with TL-227 (Texaco Oil Co.), for which the normal stresses 
are roughly twenty times as great as those which develop in STP. 

torsional oscillation of a rod (the 'flower ' instability) 

This work was supported by the U.S. Army Research Office. 
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Plnte 1 

(4 (4 
PrarrnE 3. The frce surfaces of STP floating on watar (see figurc 1). Rod radius = 0.627~111.  
Angular velocity, a: (a )  7 . 5 ;  ( b )  11.0; (c) 14.5; (d )  19.5 rad/s. The STP climbs up into air arid down 
in to  water. The reader is cantiond against confusing mirror roflcxioris in the frec surface with the 
actual rise. 

BErlVERR AND JOSEPH (Far ing  p .  272) 
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FIGURE 4. (a ) ,  ( b )  Top views of the four-petal configurations bifurcating fr om a n  axisyinmet,ric time- 
periodic flow. The two views are photographs a t  two different instants during a cycle: (L) = 9.5 
cyclesls, 0 = 200". (c) Top view arid ( d )  side view of the three-petal corifiguration bifurcating from 
an axisymmetric time-periodic flow: w = 9.2 cyclesls, 0 = 235". 


